FLAVONOIDS FROM DODONAEA VISCOSA*

KUSUM SACHDEV and DINESH K KULSHRESHTHA

Central Drug Research Institute, Lucknow, India

(Revised received 22 October 1982)

Key Word Index--Dodonaea uscosa, Sapindaceae, 6-methoxyflavonols, flavanone, isorhamnetin 3-rhamnosylgalactoside, aliarin, 5,7-dihydroxy-3'-(3-hydroxymethylbutyl)-3,6,4'-trimethoxyflavone

Abstract—An investigation of Dodonaea viscosa afforded a new flavonoid having an isoprenoid side chain along with the seven known flavonoids. 5-hydroxy-3,6,7,4'-tetramethoxyflavone, pinocembrin, santin, penduletin, 5,7,4'trihydroxy-3,6-dimethoxyflavone, aliarin and isorhamnetin 3-rhamnosylgalactoside. The structure of the new flavonoid was elucidated as 5,7-dihydroxy-3'-(3-hydroxymethylbutyl)-3,6,4'-trimethoxyflavone

INTRODUCTION

As a part of our investigation on *Dodonaea viscosa* L [1], we report here the isolation of eight flavonoids including one new compound (3) The structural elucidation of the latter is described.

RESULTS AND DISCUSSION

The chloroform fraction of the alcoholic extract of the aerial part of Dodonaea viscosa afforded, on chromatoseparation, 5-hydroxy-3,6,7,4'-tetramethoxyflavone (1), 5,7-dihydroxyflavanone, (pinocembrin), 5,7-dihydroxy-3,6,4'-tetramethoxyflavone (santin) (2), a new flavonoid (3) and 5,7,4'-trihydroxy-3'(3-hydroxymethylbutyl)-3,6-dimethoxyflavone (aliarin) (4). The n-butanol fraction was resolved into ethyl acetate

$$R^2O$$
 OR^4
 OR^4
 OR^4

- $R^2 = R^4 = Me$, $R^1 = R^3 = H$
- $R^4 = Me$, $R^1 = R^2 = R^3 = H$

3
$$R^4 = Me$$
, $R^3 = CH_2CH_2CH_2CH_M^2$, $R^{\top} = R^2 = H$

- $R^2 = Me$, $R^1 = R^3 = R^4 = H$
- $R^1 = R^2 = R^3 = R^4 = H$

7 R²=Me, R³=CH₂CH₂CH
$$\frac{\text{CH}_2\text{OH}}{\text{Me}}$$
, R¹=R⁴=H
8 R¹=R²=R⁴=Me, R³=CH₂CH₂CH $\frac{\text{CH}_2\text{OH}}{\text{Me}}$

and water fractions. The ethyl acetate fraction yielded 5,4'-dihydroxy-3,6,7-trimethoxyflavone (penduletin) (5) and 5,7,4'-trihydroxy-3,6-dimethoxyflavone (6), whereas isorhamnetin 3-rhamnosylgalactoside was obtained from the water fraction after repeated chromatography over Si gel

Flavonoid 3, M⁺ 430, gave a positive Shinoda test and a negative Quastel test which indicated it to be a flavonoid without free ortho-dihydroxyl functions. Its solubility in 10 % aqueous sodium carbonate suggested the presence of a free hydroxyl group at C-7 In its UV spectrum (Table 2) the aluminium chloride-hydrochloric acid shift of band I by 21 nm indicated the presence of a free 5-OH function along with 6-OR grouping [2] The presence of an oxygen function at C-6 is also corroborated by the suppression of band II for a free 7-OH [3]. Moreover, the position of band II in 3 at 272 nm was almost identical with the corresponding band of the other 6-methoxy flavonoids isolated from this plant. This observation also suggested a common oxygenation pattern of ring A in these flavonoids, i.e. at positions C-5-C-7

The ¹H NMR spectrum showed a set of signals that could be assigned to a side chain of the type $-CH_2CH_2CH < \frac{CH_2OH}{Me}$, viz a 3H doublet (J = 7 Hz) at δ 0.91 for a methyl group located adjacent to a methine group, a 2H doublet (J = 7 Hz) at 3 43 due to resonance of -CH₂OH protons attached to the same methine carbon, a broad multiplet at 1.55 integrating for three protons assigned to $-CH_2-CH \le part$ and a 2H triplet (J = 7 Hz) at 261 due to a benzylic -CH₂ group This spectrum also revealed the presence of three methoxyl groups appearing as 3H singlets at δ 3 71, 3 78 and 3 9 The aromatic region had a 1 H singlet at δ 6.42 ascribable to the proton at C-8, the only unsubstituted position in ring Ring B protons displayed a 3H ABX pattern of splitting, resulting in the appearance of an ortho-coupled 1H doublet (J = 9 Hz) at $\delta 6 88$, a meta-coupled 1H doublet (J = 3 Hz) at 7.75 and a 1H double doublet (J = 3 Hz)= 39 Hz) at 7.8 assigned to H-5', H-2' and H-6', respectively These data required the placement of the remaining substituents, viz two methoxyl groups and one isoprenoid side chain at C-3, C-3' and C-4'

The side chain was placed in ring B on the basis of its mass spectrum It showed losses of 73 and 72 a.m u from

^{*}CDRI communication No 3175

[M]⁺ as well as from [M – Me]⁺, [M – H₂O]⁺ and [B₂]⁺ Occurrence of benzylic cleavage explained the loss of 73 a m u Loss of 72 a.m u was explainable by the β -cleavage of the side chain accompanied by hydrogen transfer to the aromatic nucleus which takes place via a 1,6-rearrangement. This kind of rearrangement requires at least one free *ortho* position [4], therefore, the choice of placing the side chain was narrowed down to either C-3' or C-4' Facile loss of a methyl radical followed by the loss of 28 a m u favoured methoxyl groups at C-3 and C-6 [3] Besides the fragmentation pattern, the relative intensities of [M]⁺, [M – H]⁺, [M – Me]⁺ and [M – H₂O]⁺ (see Experimental) were also in conformity with the placement of two hydroxyl groups at C-5 and C-7 and two of the three methoxyl functions at C-3 and C-6, respectively [5].

The relative disposition of the side chain and methoxyl group in ring B of 3 was settled by its correlation with aliarin (4), a compound reported earlier from this plant [1] Thus, aliarin was methylated with ethereal diazomethane but this methylating agent failed to react upon the C-4' hydroxyl group presumably due to the steric hindrance caused by the bulky side chain As a consequence, it gave 5,4'-dihydroxy-3'-(3-hyd

methylbutyl)-3,6,7-trimethoxyflavone (7) which, although being a monomethyl ether of aliarin, was found to be different from 3 on the basis of its UV and mass spectra. However, when both 3 and 4 were separately methylated with dimethylsulphate-potassium carbonate in dry acetone, they furnished permethylated products (8), (M⁺, 458) which were identical in all respects (cochromatography and superimposable IR and mass spectra). This result led to the conclusion that the side chain in 3 was present at C-3', as in aliarin, with the remaining methoxyl group at C-4'. Thus, the structure of 3 was established as 5,7-dihydroxy-3'-(3-hydroxymethyl-butyl)-3,6,4'-trimethoxyflavone.

Other products isolated from the plant. 5-hydroxy-3,6,7,4'-tetramethoxyflavone (1), pinocembrin, santin (2), penduletin (5), and 5,7,4'-trihydroxy-3,6-dimethoxyflavone (6) were identified by UV (Table 2), ¹H NMR (Table 3) and mass spectra (Table 1) Flavonoids 2, 5 and 6 were correlated with each other by their conversion into 1 on treatment with ethereal diazomethane. The identity of isorhamnetin 3-O-rhamnosylgalactoside was determined by UV, ¹H NMR, FDMS, and hydrolysis and finally by comparison of its

Table 1 Mass spectral data of 6-oxygenated flavonoids from Dodonaea tiscosa*†

	1	2	4‡	5	6
[M] ⁺	358	344	416	344	330
	(100)	(100)	(100)	(100)	(100)
$[M-H]^+$	357	343	415	343	329
	(35 8)	(31.5)	(27)	(30)	$(28\ 2)$
$[M - Me]^+$	343	329	401	329	315
	(60)	(39.4)	(42 9)	(552)	(41.9)
[M-H2O] ⁺	340	326	398	326	312
	(30)	(21)	(20.7)	(7.7)	(16)
$[M-HCO]^+$	329	*****	V****	315	301
	(58)	-	-	(10.3)	(43)
$[M - Me - H2O]^+$	325	311	383	311	297
	(6 3)	(10.5)	(5)	(43)	(52)
[M – MeCO] ⁺	315	301	373	301	287
	(15)	$(25\ 2)$	(117)	(11.1)	(19.5)
$[M - MeCO - H2O]^+$	297	283	355	283	269
	(8.3)	(14)	(7)	(42)	(9.2)
$[M - MeCO - MeCO]^+$	272	258	330	258	244
	(3.3)	(7.8)	(4.5)	(27)	(54)
$[A_1 + H]^+$	197	_	183	197	183
	(16)		(44)	(16)	(1.6)
[A ₁ – Me] ⁺	181	167	167	181	167
	(10.8)	(52)	(4.5)	(10.5)	(56)
$[A_1 - MeCO]^+$	153	139	139	167	139
	(10.3)	$(3\ 2)$	(5)	(3.3)	(2.4)
$[A_1 - MeCO - CO]^{\perp}$	125	_	-	139	
	(3.1)			(1.1)	
$[\mathbf{B}_2]^+$	135	135	207	121	121
	(20)	(13.1)	(2.5)	(18.5)	(16.2)

^{*}Mass spectra were run at 70 eV, source temp from 180° to 200° and probe temp from 200° to 230° . Values in m/z are followed by rel int of the peaks in parentheses For A_1 and B_2 terminology see ref [3]

[†] Mass spectrum of 3 is given in the Experimental

[‡]Peaks at m/z (rel int) 344 $[M-72]^+$ (45), 343 $[M-73]^+$ (91), 329 $[M-Me-72]^+$ (99), 328 $[M-Me-73]^+$ (49), 135 $[B_2-72]^+$ (25), 134 $[B_2-73]^+$ (35), 107 $[B_2-72-CO]^+$ (25) and 106 $[B_2-73-CO]^+$ (35) were also observed

Table 2 UV spectral data of 6-oxygenated flavonoids from Dodonaea viscosa*†

	1	2	3	4	5	6
МеОН	338	340	335, 300sh	350, 305sh	340	340
	275	274	272	270	272	273
NaOMe	_	375, 297sh,	370, 300sh	402	390	410, 327sh
	275	276	272	285	275	274
AICI ₃	358	360, 305sh,	362, 305sh,	366, 308sh,	367	258
	287	283	276	275, 255	284	278
AlCl ₃ -HCl	356	357, 305sh	356, 305sh	361, 308sh	358	355
	287	284	280	278, 252	282	275
Na()Ac	338	368, 305sh	370, 300sh	370, 305sh	388, 340sh	392, 300sh
	275	275	273	275	270	274
NaOAc-H ₃ BO ₃	338	340	342	350, 305sh	340	343
	273	273	271	272	272	272

 $^{*\}lambda_{max}$ in nm

Table 3 ¹H NMR spectral data of 6-oxygenated flavonoids from Dodonaea viscosa*†

	1	2	4	5	6
H-8	66 s	641 s	6.42 s	675 s	6 49 s
H-2'	7 94 dd	7 96 dd	7.83 d	80 dd	7 94 dd
	(2, 10)	(3 5, 10)	(2.5)	(2, 10)	(3.5, 10)
H-3'	695 dd	6 97 dd		6 92 dd	6 93 dd
	(2, 10)	(3 5, 10)		(2, 10)	(3 5, 10)
H-5'	695 dd	6 97 dd	6 88 d	6 92 dd	6 93 dd
	(2, 10)	(3 5, 10)	(9)	(2, 10)	(35, 10)
H-6'	7 94 dd	7 96 dd	7 72 dd	80 dd	7 94 dd
	(2, 10)	(3 5, 10)	(25, 9)	(2, 10)	(3.5, 10)
QMe	3.68, 3.76	3.8, 3.78, (6H), s.	3.76, 3.78, 5.	3.77, 3.85	383, 395 s
	3 79, 3 80 s	, , ,		3 95 s	
-CH ₂ CH ₂ CHC _{Me}	_	_	Me, 0 93, d (7), -CH ₂ CH \subset , 1 7, m, -CH ₂ . 2 68, d (7),		
			-CH ₂ OH, 3 39, d (7)		

^{*}Spectra were recorded in Me_2CO-d_6 Values are given in δ -values (ppm) downfield from TMS as internal standard J values in Hz are given in parentheses

data with those reported in the literature [6, 13].

Interestingly, the characterizations of aharin (4) and 5,7-dihydroxy-3'-(3 -hydroxymethylbutyl)-3,6,4'-trimethoxyflavone constitute the first report of C-prenylation in ring B in the area of flavones and flavonols Previously, C-prenylation in ring B has been noticed in flavanones, isoflavanones and isoflavones only. It is also noteworthy that in the family Sapindaceae, 6-oxygenated flavonoids have been isolated only from the genus Dodonaea: 5-hydroxy-3,6,7,4'-tetramethoxyflavone from Dodonaea lobulata [14] and santin from Dodonaea attenuata var. linearis [15] and Dodonaea viscosa var angustifolia [16]. Both of these flavonoids have also been isolated in the present studies.

EXPERIMENTAL

All mps are uncorr. IR spectra were recorded in KBr, UV spectra were obtained in MeOH, CC employed Si gel and polyamide The isolation of flavonoids was monitored by TLC over Si gel using the following solvents (1) C_6H_6 –MeOH (9.5 0.5), (2) CHCl₃–MeOH (9.5 0.5), and (3) EtOAc–MeOH–H₂O (8 1 1). The compounds were visualized by spraying with $1^{\circ}_{.0}$ ceric sulphate in 2 N H₂SO₄ Sugars were chromatographed over Whatman No 1 paper using *n*-BuOH satd with H₂O.

Extraction and isolation 14 kg of air-dried, ground aerial parts of Dodonaea viscosa L (voucher specimen deposited in CDRI) was extracted with alcohol The alcoholic extract was coned

[†]All UV spectra were recorded using standard procedures [13]

^{† 1}H NMR of 3 is given in text

under red pres at $ca\ 50^\circ$ and resolved into n-hexane. CHCl₃, n-BuOH and H₂O soluble fractions The n-BuOH fraction was further partitioned into EtOAc and H₂O The gross fractionation of the CHCl₃ fraction was effected over Si gel using n-hexane, C₆H₆ and EtOAc The C₆H₆-EtOAc (3 1) eluate, on turther chromatography over Si gel, yielded 1, pinocembrin and 2 The EtOAc eluate gave 3 and 4 by repeated column and prep TLC over Si gel in solvent 2

The EtOAc fraction of the n-BuOH soluble material was repeatedly chromatographed over Si gel and polyamide to yield a mixture of 5 and 6 which were further separated by chromatography over Si gel using gradient elution with CHCl₃–MeOH. The H₂O fraction of the same material was chromatographed over Si gel using EtOAc (satd with H₂O)-MeOH in the sequence of increasing polarity, this resulted in the elution of isorhamnetin 3-rhamnosylgalactoside in EtOAc (satd with H₂O)-MeOH (9 8 0 2)

5-Hydroxy-3,6,7,4'-tetramethoxyflavone (1) was crystallized from *n*-hexane–Me₂CO as yellow needles, mp 176', TLC in solvent 1 It was identified by UV, MS and ¹H NMR as 1 [7, 14] (Tables 1 3)

Pinocembrin was crystallized from *n*-hexane–Me₂CO as white needles, mp 201°, TLC in solvent 1. It was characterized from its UV, ¹H NMR and MS data [8, 9]

Santin (2) was also crystallized from n-hexane-Me₂CO, mp 163, TLC in solvent 1. On the basis of UV, 1 H NMR, MS and solubility in 10°_{\circ} aq. Na₂CO₃ its structure was established as 2 [10, 15] (Tables 1–3)

Penduletin (5) was crystallized from Me₂CO, mp 212-214°, TLC in solvent 2 Its UV, ¹H NMR and MS data (Tables 1 3) were in agreement with those of 5 [11]

5,7,4'-Trihydroxy-3,6-dimethoxyflavone (6) was obtained as dark yellow crystals mp 217°, TLC in solvent 2. It was identical with 6 (UV, MS and ¹H NMR, Tables 1–3) [12]

Isorhamnetin 3-rhamnosylgalactoside was crystallized from CHCl₃ MeOH, mp 187°, TLC in solvent 3. It was hydrolysed with 2 N HCl at 100° for 4 hr and the aglycone identified by its spectral data [13] and sugars by PC. The UV, ¹H NMR and MS data of the glycoside were identical with those reported in the lit [6].

flatione (3) TLC in solvent 2 IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹ 3485, 3000, 2920, 1650, 1605 and 1250, UV in Table 2, ¹H NMR in the text, MS m/z(rel int) $430 [M]^+$ (100), $429 [M-H]^+$ (27 3), $415 [M-Me]^+$ (43.6), $412[M-H₂O]^+$ (26.9), $397[M-Me-H₂O]^+$ (9.4), 387 $[M - MeCO]^+$ (173), 369 $[M - MeCO - H_2O]^+$ (145), 358 [M $[-72]^+$ (5 4), 357 [M $[-73]^+$ (11 6), 343 [M $[-Me-72]^+$ (18 2), $342 [M - Me - 73]^{+} (24), 340 [M - H₂O - 72]^{+} (24), 339 [M$ $-H_2O - 73$] + (3 8), 221 [B_2] + (8 2), 206 [$B_2 - Me$] + (3 6), 193 $[B_2 - CO]^+$ (3 3), 183 $[A_1 + H]^+$ (10 0), 182 $[A_1]^ [A_1 - Me]^+$ (182), 155 $[A_1 - CO]^+$ (91), 149 $[B_2 - 72]^+$ (399), 148 $[B_2 - 73]^+$ (69), 140 $[A_1 + H - MeCO]^+$ (53), 139 $[A_1]$ -MeCO] + (9 3), 135 (11 0), 134 [$B_2 - 72 - Me$] + (8 2), 133 [B_2 -73 - Me]⁺ (91), 121 [B₂ - 72 - CO]⁺ (94), 120 [B₂ - 73 $-CO]^+$ (5 6), 112 $[A_1 + H - MeCO - CO]^+$ (12 5), 111 $[A_1]$ $- MeCO - CO]^+$ (21), $106 [B_2 - 72 - MeCO]^+$ (45), $105 [B_2]^+$ $-73 - MeCO]^+$ (187)

5,4'-Dihydroxy-3'-(3-hydroxymethylbutyl)-3,6,7-trimethoxy-flavone (7) TLC in solvent 2 UV $\lambda_{\rm max}^{\rm MeOH}$ nm 272, 300 (sh), 338, + NaOMe 274, 406, + AlCl₃ 278, 305 (sh), 368, + AlCl₃-HCl 276, 305 (sh), 355, + NaOAc 270, 345, + NaOAc-H₃BO₃ 270,

345 MS m/z 430 (M⁺, base peak), 429 [M+H]⁺, 415 [M -Me] + 412 [M $-H_2O$] + 398 [M $-Me - H_2O$] + 387 [M $-MeCO]^{+}$, 369 $[M - MeCO - H_2O]^{+}$, 358 $[M - 72]^{+}$, 357 $[M-73]^+$, 343 [M-Me-72] 342 $[M-Me-73]^+$ 340 [M $[-H_2O - 72]^+$ 339 $[M - H_2O - 73]^+$, 207 $[B_2]^+$, 197 $[A_1]^+$ +H]⁺, 181 [A₁-Me]⁺, 168 [A₁-CO]⁺ 155 153 [A₁ $-\text{MeCO}]^{+}$, 149, 135 $[B_2 - 72]^{+}$, 134 $[B_2 - 73]^{+}$, 125 $[A_1]$ -MeCO-CO] $107[B_2-72-CO]^+, 106[B_2-73-CO]$ 3'-(3-Hydroxymethylbutyl)-3,5,6,7,4'-pentamethoxyflacone (8) TLC in solvent 2 1R $v_{max}^{CHCl_3}$ cm $^{-1}$ 3400, 3000, 2920, 1625, 1600 and 1248, ¹H NMR (60 MHz, CCl₄) ∂ 0.91 (3H d, J = 7 Hz Me), 1 50 (3H, m, CH_2 CH <), 2 57 (2H, t, J = 7 Hz benzylic protons), $3.4 (2H, d, J = 7 Hz, CH₂OH), <math>3.70 (6H, 2 \times OMe)$, 3.78 (3H, s. OMe) 6.51 (1H s, H-8) 5.72 (1H d, J = 10 Hz, H-5'), 7 66 (1H, d J = 3 Hz H-2'), 7 73 (1H, dd, J = 3, 10 Hz, H-6'), $MS \ m/z \ 458 \ [M]^+, 457 \ [M-H]^-, 443 \ [M-Me]^+, 440 \ [M]$ $-H_2O$ ⁺ 439 [M $-H_2O$ -H] + 425 [M -Me $-H_2O$] + 415 $[M - MeCO]^+$ 397 $[M - MeCO - H_2O]^+$, 386 $[M - 72]^+$, 385 [M-73] 371 [M-Me-72] 370 [M-Me-73] .221 $[B_2]^+$, 211 $[A_1 + H]^+$, 196 $[A_1 - H - Mc]^+$ 195 $[A_1 - Mc]^+$, $167 [A_1 - MeCO]^+$, $149 [B_2 - 72]$, $148 [B_2 - 73]^+$ $139 [A_1]$ -MeCO-CO] 134 [B₂ - 72 - Me] 1, 133 [B₂ - 73 - Me] 1 121 $[B_2 - 72 - CO]$, 120 $[B_2 - 73 - CO]^+$, 106 $[B_2 - 72]$ -MeCO] 105 [B₂ -73 - MeCO]

Acknowledgements We are thankful to Dr S P Popli for valuable discussions. Thanks are also due to the staff of the Regional Sophisticated Instruments Centre, CDRI, Lucknow, for spectral analyses. One of us (KS) thanks the CSIR. New Delhi, for the award of a senior research fellowship.

REFERENCES

- 1 Sachdev, K and Kulshreshtha, D K (1982) Indian J Chem 21B, 789
- 2 Mears, A and Mabry, T. J. (1972) Phytochemistry 11, 411
- 3 Mabry, T J and Markham, K R (1975) in *The Flatonoids* (Harborne, J B, Mabry, T J and Mabry, H, eds.) Chapman & Hall, London
- 4 Budzikiewicz, H. Djerassi, C and Williams, D H (1967) Mass Spectrometry of Organic Compounds p 82 Holden-Day, San Francisco
- 5 Goudard, M., Favre-Bonvin, J., Lebreton P and Chopin, J (1978) Phytochemistry 17, 145
- 6 Notje, B K and Koeppen, B H (1965) Biochem J 97, 209
- 7 Southwick, L., Mabry, T. J. Averett, J. and Powell. A. M. (1972) Phytochemistry. 11, 2351.
- 8 Bick, I. R. C. Brown, R. B. and Hillis, W. E. (1972) Aust. J. Chem. 25, 449.
- 9 Asakawa, Y (1971) Bull Chem Soc Jpn 44, 2761
- 10. Wollenweber E and Lebreton, P (1971) Biochimie 53 935
- 11 Flores, S E and Herran J (1958) Tetrahedron 2, 308
- 12 Rosler, H., Star, A. E. and Mabry, T. J. (1971) Phytochemistry. 10, 450
- 13 Mabry, T J, Markham, K R and Thomas, M B (1970) The Systematic Identification of Flavonoids Springer, New York
- 14 Dawson, R. M. Jarvis, M. W., Jefferies, P. R. Payne, T. G. and Rosich, R. S. (1966) Aust. J. Chem. 19, 2133
- 15 Payne, T G and Jefferies, P R (1973) Tetrahedron 29, 2575
- 16 Dominiguez, X. A., Fraco, R. Cano, C. G. and Chavez, C. N. (1980) Rev. Latinoam Quim. 11, 150